

Unit 8

Exponential & Logarithmic Functions

Exponential Growth and Decay

Sections 8.1 and 8.2

Exponential Growth

$$f(x) = a \cdot b^{x} ; where a > 0, b > 1$$

$$g(a) = a \cdot b^{x} = a \cdot b^{x} = a \cdot b^{x} = b^{x}$$

1. Graph $y = \frac{1}{3} \cdot 2^x$, and $y = 3 \cdot 2^x$. Compare with the graph of $y = 2^x$

2. Graph $y = -\frac{1}{r} \cdot 2^x$, and $y = -5 \cdot 2^x$. Compare with the graph of $y = 2^x$

Describe the effect of a on the graph of $y = a \cdot 2^x$ when a is positive and 3. when *a* is negative.

Graph the functions

6

•
$$y = \frac{1}{2} \cdot 3^{x}$$

P.G.: $y = 3^{x}$ • HA: $y = 0$
• $b: (-\infty, \infty)$
P.G.: $y = 3^{x}$ • $b: (-\infty, \infty)$
• $b: (-\infty, \infty)$
P.G.: $y = 3^{x}$ • $b: (-\infty, \infty)$
• $b: (-\infty, \infty)$
P.G.: $y = 3^{x}$ • $b: (-\infty, \infty)$
• $b: (-\infty, \infty)$

•
$$y = -\left(\frac{3}{2}\right)^{x}$$

• $y = -\left(\frac{3}{2}\right)^{x}$
• $PG: y = \frac{3}{2}^{x}$
• $TR: Reflect x \cdot axis$
• $Pts: (O_{1} - 1)$
 $(1 - \frac{3}{2})$

•
$$HA: Y = 0$$

• $D: (-\infty, \infty)$
• $R: (-\infty, 0)$

- List Parent Graph
- List Transformations ٠
- Plot 2 points
- List/draw HA
- State D and R

Graph the functions

•
$$y = -3^{x} - 2$$

P.G: $y = 3^{x}$
TR: Reflect x-axis
Down Z
Pts: $(0, -3)$
 $(1, -5)$
HA: $y = -2$
D: $(-\infty, \infty)$
R: $(-\infty, -2)$

- List Parent Graph
- List Transformations
- Plot 2 points
- List/draw HA
- State D and R

 $h = 1.313(1 + .98)^{t}$ h= 1.313 (1.98) = Using Exponential Growth Models $y = a(1+r)^t$ q = initial amount $r = rate (\sigma_0 \Rightarrow decimal)$ t = time

1997

1.313 million In January, 1993, there were about 1,313,000 = internet hosts. During the next 5 years, the number of hosts increased by 98% per year.

a) Write a model giving the number h (in millions) of hosts t years after 1993. About that's millions how many hosts were there in 1996?

Graph the model $h = (.313(1.98)^3)$ $h = (0.92 \approx 10, 192, 020 \text{ hosts})$ b)

(5,40)

(0, 1.313) (3, 10.192)(1, 2.6) (4, 20.2)

(2.5.1)

In what year were there 30 million hosts?

210 20 Time (years aller 1993)

growth factor

You deposit \$1000 in an account that pays 8% annual interest. Find the balance after 1 year if the interest is compounded with the given frequency.

a.) annually n=1 $A = 1000 (1 + \frac{.08}{1})^{11}$ $A = 1000 (1 + \frac{.08}{1})^{11}$ $A = 1000 (1 + \frac{.08}{4})^{41}$ $A = 1000 (1 + \frac{.08}{365})^{3651}$ $A = \frac{4}{1082.43}$ $A = \frac{1083.27}{1083.27}$

If the population of a town increased by 30% per year over a period of 10 years, by how many times did the population increase

in the ten-year period?

$$y = a(1+r)^{t}$$

 $y = (1.3)^{r0}$
 $y = 13.78....$

13.8 times bigger

Exponential Decay

$$f(x) = a \cdot b^x$$
; where $a > 0$ and $0 < b < 1$
fraction blu $\circ \rightarrow 1$

State whether the following functions are exponential growth or decay

$$f(x) = 5 \left(\frac{2}{3}\right)^{x} \qquad f(x) = 8 \left(\frac{3}{2}\right)^{x} \qquad f(x) = 10(3)^{-x}$$

$$= 10 \left(\frac{1}{3}\right)^{x}$$

$$= 10 \left(\frac{1}{3}\right)^{-x}$$

$$= 10 \left(\frac{3}{3}\right)^{x} = 5 \text{ frowth}$$

• List Parent Graph

List Transformations

Graph the functions

$$y = 5 \cdot \frac{1}{8}^{(x+1)} - 2$$

• $y = 5 \cdot 8^{-(x+1)} - 2$
P.G.: $y = \frac{1}{8}^{x} \quad y = 8^{-x}$ Pts:
TR: V. Stretch
Left 1
Down 2
HA: $y = -2$

- List Parent Graph
- List Transformations
- Plot 2 points
- List/draw HA
- State D and R

$$(-1, 3)$$

$$(0, -1, 3)$$

$$(0, -1, 3)$$

$$= \frac{5}{8} - 2$$

$$= \frac{5}{8} - 2$$

$$= \frac{5}{8} - \frac{16}{8} = -\frac{11}{8}$$

$$= -\frac{13}{8}$$

Using Exponential Decay Models

1- .16= .84

$$y = a(1-r)^t$$

You buy a new car for \$24,000. The value y of the car decreases by 16% (> y = 24,000 (. 84)^t each year.

- a) Write an exponential decay model for the value of the car. Use the model to estimate the value after 2 years. Graph the model 40^{-34} (-84^{-34})²
- **bY** Graph the model
- Use the graph to estimate when the car will have a value of \$12,000

Textbook Practice Problems

Section 8.1

- Pages 469-470
- #13-24, 29, 31, 34, 41, 49-54

Section 8.2